Score following using the sung voice

Miller Puckette
Department of Music, UCSD
La Jolla, Ca. 92039-0326
mspQ@ucsd.edu
copyright 1995 Miller Puckette. A version of this paper
appeared in the 1995 [CMC proceedings.

December 8, 1995

Abstract

While finished peices of music have often relied on score following using
the flute, clarinet, trumpet, violin, and piano, little has been written or
performed using the sung voice. Consequently, the special opportunities
offered by combining the live, sung voice with state-of-the-art electronics
remain largely unexplored. This paper describes the special challenges
encountered when trying to use score following on the voice and some
techniques that can partly overcome them.

1 Score following generalities

Computers are capable of making a much wider range of sounds than one could
possibly specify in real time. One important area of research in the field of
computer music is how best to map the small amount of information which a
live player is capable of expressing, into the much larger space of sounds the
computer can generate in response. Among the many strategies which have
been proposed, a special niche is occupied by so-called score following.
Independently developed score followers were demonstrated during the 1984
ICMC by [Dannenburg 84] and [Vercoe 84], both of which focussed on the
specific problem of extracting tempo from live, solo, monophonic instrumen-
tal parts. The underlying asumption was that the solo player would play the
notated rhythms accurately, differing from performance to performance mostly
in the choice of tempo, which was supposed to change slowly with time. Un-
der these conditions, the computer could actually anticipate the onset of new
events by the performer. The computer could thus pre-prepare events which
would be played simultaneously with the live player, or provide musical events



which fell between events detected from the live player, in a way that respected
the player’s choice of tempo.

The possibility of other deviations from metrically exact performance be-
sides tempo was studied in [Vercoe 1985]. Musical phrasing seems to be partly
communicated by systematic deviations from the exact values of the notes’ writ-
ten durations, which are better described as belonging to the individual note
than as a global tempo change. These decisions are ”learned” by the computer
through repeated rehearsals; they may vary from performer to performer.

Meanwhile, [Dannenburg 86] considered the quite different problem of a
soloist playing a polyphonic instrument. In general, Dannenburg’s algorithms
have proved more robust than Vercoe’s, whereas Vercoe’s are more responsive
than Dannenburg’s. Vercoe assumes a high level of musical skill on the part
of the musician and assumes that deviations from marked rhythms are made
on purpose; Dannenburg does not trust his players (or his pitch detections
algorithms) to the same extent.

The use of score following in live concerts was pioneered at IRCAM [Puck-
ette 1992]. The implicit model of the performer which underlies tempo-detecting
score followers was found to break down when dealing with contemporary mu-
sic as it 1s practiced at IRCAM. In response, a score follower was developed
which has no dependence on tempo, and which makes no predictions about the
future behavior of the musician to be followed. Rather than use predictions to
arrange for the computer and player to act simultaneously, the effort was made
to make the delay between the musician’s stimulus and the computer’s response
imperceptibly small.

IRCAM’s first score following algorithm still has an important feature in
common with those of Dannenburg and Vercoe, in that it relies on a finite al-
phabet of tempered-scale pitches. This works perfectly for the piano and at
least fairly well for the flute and clarinet; not surprisingly, these three instru-
ments figure strongly in IRCAM’s recent repertory. This assumption had to
be dropped, however, in realizing Philippe Manoury’s En Echo for soprano and
computer, the first version of which was premiered in Summer 1993. That piece
catalyzed the research reported here.

2 Instantaneous pitch

The voice is probably the instrument whose output least resembles a sequence
of discrete tempered pitches attained at well-defined times. For every other in-
strument we have encountered, the first step toward score following has been to
convert the instrumental performance to a sequence of detected note onsets. In
the case of vocal sounds, the pitch changes rapidly and constantly. The onset
of a note can have an instantaneous pitch several half-tones away from the note
eventually stabilized upon. Even during the ”steady-state” of a sung note (if
one can be said to exist at all) vibrato can cause excursions two semitones away



from the sung pitch, and occasionally even more. The problem of obtaining
the pitches of sung notes therefore consists of two sub-problems: getting the in-
stantaneous pitch (a function of time which is sometimes continuous, sometimes
not) and then getting the discrete pitch, which corresponds to sung notes.

Obtaining instantaneous pitches of the human voice is a popular subject
of study. The particular algorithm we have adopted is related to the one re-
ported in [Rabiner 78], which is attributed in turn to [Noll 69]. Instead of using
the Fourier spectrum as Rabiner does we will use the accelerated constant-Q
transform reported in [Brown 92]; see also [Brown 93].

If the signal is denoted by «[k], k = 0,1, 2, ..., we define a not-quite-constant-

Q spectrum,
b .
exp(—iwn) n—a
Z b—a w(b_a)x[n]

n=a

S[w] = ) (1)

where w is the Hanning window function defined from 0 to 1:
wlt] = 1/2 (1 — cos(2nt)) .

The sum ranges over a window ranging between sample number a and b, which
both depend on w. The sum is equal to the instantaneous amplitude of the
output of a FIR bandpass filter centered about the angular frequency w. The
filter admits frequencies within 47 /(b — a) radians per sample of the center
frequency w; the 3 DB point is roughly m/(b — a) radians per sample distant
from w on either side. The selectivity is thus,

(b— a)w.

@= 27

In order to limit the response time of the filter, the window size b — a is limited
to a maximum value N typically between 20 and 30 milliseconds. Subject to
this constraint the window size was chosen so that the passband was a halftone
wide, 1.e., Q = 17:

b—a =min(N, 34r/w).

The spectrum S hus reflects a tradeoff between frequency selectivity and reso-
lution in time.

From the definition of S in Equation 1, we now define a quantity which
roughly corresponds to Noll’s ”Harmonic Sum Spectrum:”

Liw] = p1S(w) + p2S(2w) + ... + psS(8w), (2)

where the p; are positive weights. Values of L are computed for frequencies
ranging from w = 87/N to the Nyquist frequency m. The lower bound is the
center frequency at which the best attaiable @ is 4. For high frequencies, some
or all harmonics may lie above the Nyquist frequency; their contribution is taken
as 0.



The spectrum L can be thought of as estimating the liklihood of seeing a
spectrum such as S if the signal # contained (among other possible summands)
a signal with period 27/w. To call this a true liklihood function would be a
grave abuse of that term; we would first have to propose an underlying model in
which the signal’s deviation from a periodic one were given by a known stochastic
process. The sung voice’s deviation from pure periodicity cannot reasonably be
modelled by any tractable random process. For a clear exposition of the theory
underlying Maximum Liklihood estimation see [Pitman 79].

Nonetheless, we proceed as if we were calculating a maximum liklihood esti-
mate. Our first estimate for w is to evaluate L for the range of values of w under
consideration, at quarter-step intervals; the frequency is simply that which at-
tains the highest value of L. The weights p; are found by trial and error in order
to give the best output; their value differs from instrument to instrument. A
good starting point is p; = [1,.9,.8,.7,.7,.7,.7,.7].

This will give us some answer or another no matter what sort of signal we
analyze; we need a criterion for deciding whether the signal really has a pitch or
not. To do this we invent an estimate of the signal’s quality, which is the quotient
of power of the signal’s first eight harmonics (as measured by the appropriate
values of S), divided by the signal’s total power over the frequency range from
0 to 8w. If the signal is perfectly harmonic, we would expect this quotient to be
one; if 1t 18 less than 0.6 or so, we make no estimate for the frequency.

The above method only estimates frequency to the nearest quarter tone. To
obtain a sharper estimate of w we then apply a curve-fitting procedure, which
was found by trial and error. If L takes on three consecutive values x,y, z, and
if the peak is at y, we calculate

f1:1_$/yaf2:1_z/ya

c=(f1 = f2)/ (2. % (fr + f2) = 3. % f1 * fa).

The value C, which is between -1/2 and 1/2, is the correction in quartones.
(Tt turns out that the weights p; used to finf the peak initially are not the
best weights to use here; since the accuracy of a harmonic’s contribution to the
fundamental is proportional to harmonic number, we recalculate L here with
weights p; = [1,2,...,8]. If y is then not still at least as great as # and z, we give
up and report a correction of 1/2 in the direction of the new peak.) In practice,
the corrected result is typically accurate to within five cents.

In order to obtain discrete pitches as needed by the score following algorithm,
we will also need an estimate of instantaneous signal power. A good one is given

by,
b 2 n—a
— B 2
P=y e (550 ) et

where b —a = N.



3 Discrete pitch

We then compare the pitch and power history of the signal to try to identify
discrete sung notes. We wish to do so as soon after the note’s onset as possible,
but without compromising the robustness of the result. In light of the deep
vibratos mentioned above, we frequently cannot use a stable frequency estimate
to report a note; the vibrato’s fleeting moments of apparent stability will be
at the endpoints of the vibrato range, not at the true pitch which lies between
them.

Our discrete pitch detection algorithm reports two classes of notes, ongoing
and a posteriori. The algorithm acts differently according to whether it is in
the 7on” or ”off” state. Rules for detecting notes differ depending on this state.
The state is changed to "on” if an ongoing note is detected, and to ”off” if the
pitch and envelope signals do not agree with the last reported pitch.

3.0.1 Ongoing note detection.

As a rule of thumb, vocal vibrato runs at 6 to 7 cycles per second. In order to
identify the pitch center of a note with vibrato, we require that the instantaneous
pitch be defined for 300 milliseconds so that at least one and preferably two
cycles of vibrato are seen. To detect an ongoing note, we must be in the ”off”
state, and the maximum and minimum values of the instantaneous pitch must
be within some maximum allowable excursion such as four half-tones. A note
is then reported which is halfway between the maximum and minimum pitch
excurstion. The note’s reported pitch is not rounded to the nearest half-tone;
we will use the exact value of the pitch in the score following stage. When a
note is detected we enter the "on” state.

When in the "on” state, either of two possible conditions are regarded as
being inconsistent with the note being sung and put us in the "off” state so
that a new note may be reported as above. First, the instantaneous pitch may
stray outside the permissible range; i.e., may stray more than half the maximum
allowable excursion cited above from the note’s reported pitch. This includes
the possibility of the instantaneous pitch becoming undefined.

Second, the amplitude envelope may fall below a threshold, turning the note
off, or 1t may change in such a way as to suggest that a new note has started
(without necessarily having gone below any absolute threshold.) This is defined
as a drop in power followed by a rapid rise, typically a factor of two increase
in power over a period of 50 msec, or a factor of three rise over 100 msec, or a
factor of four over 200 msec. It appears to be necessary to apply separate test
for rapid, light attacks and for slower, heavier ones. When a new note onset is
thus detected, we do not report a pitch; instead we enter the ”off” state and
disable ongoing note detection for the required 300 msec.



3.0.2 Note detection a posteriori.

Many sung notes never meet the stability criterion for ongoing note detection.
If it appears that a note has been sung but if no note was reported using the
ongoing note criterion, an attempt is made to find a note em a posteriori.

That some note has been sung is inferred from the power signal. The note’s
beginning is detected by the note-onset criterion (which also puts the dicrete
pitch detector in the ”off” state.) THe note’s end is detcted either by a falling
off of amplitude below the note-off threshold, or oppositely by the onset of yet
another note. If either of these two occur after a note onset which was not
followed by a stable note, the best pitch candidate found during the note’s
duration 1s reported. The report thereore always arrives after the end of the
note, usually at the beginning of the folowing one. The best pitch is simply the
instantaneous pitch corresponding to the highest instantaneous power at which
an instantaneous pitch was present.

4 Score Following

We thus have two pitch signals, one which has very little delay, the other of
which is reliable and discretized, but which is typically 1/3 of a second too late.
We use the reliable one as input to a discrete-event score follower; this keeps
us globally in place. The fast but less reliable signal is then used for triggering
computer responses at the beginnings of notes.

The slow-but-reliable algorithm is based on [Puckette 92], but adapted to
take into account the fact that the pitches detected do not necessarily fall on
notes of the tempered scale. The earlier algorithm, in the case of a monophonic
melody, would essentially accept any note that matches one of the next three
pitches after the current note. In the algorithm used for the voice, whether
to make a match is determined by a scoring system; if the score for going
forward exceeds the score for staying put, a match is reported, otherwise not.
The algorithm described here would probably benefit from vectorizing it along
the lines described in [Dannenburg 84]; however, doing so might constitute an
infringement of Dannenburg’s patent.

Floating-point pitches and the inexactness of matches between the sung note
and the scored one are dealt with by regarding a possible match differently
according to how closely the matched note 1s hit. The match 1s given a value,
which is a function of how closely the desired pitch matches the received pitch.
A perfect match is awarded the maximum value; the value falls off linearly as
a function of tuning error, with an adjustible slope; typically the slope is set so
that the value hits zero when the error reaches a semitone.

The value of a possible match is set against the (negative) value of possibly
skipping notes in order to get to to the note matched. Each scores note jumped
over contributes a negative value, which can vary from note to note. On the



other had, a negative value may be awarded to receiving a note and not matching
it. This can also vary from note to note in the performance. If the value of
matching a note (counting the negative value of any notes skipped in order to
match it) exceeds the (negative or zero) value of not matching the note at all,
the match is made and the algorithm moves forward to the new note.

Notes in the score may be weighted differently depending on their liklihood
of being hit in the performance, by varying the negative value of jumping over
them. This is not only useful in cases where certain notes in the score are more
likely to be detected than others, but also permits the inclusion of other events
such as rests, specific vowels or consonants, or other gestures which may have a
higher or lower liklihood of error in detection than ordinary notes. For example,
if we wish absolutely not to jump over a specific note in the score, we attach a
high penalty to jumping over it to match a note with a different pitch.

The detection of rests 1s an example of a situation where the penalty for
receiving extra notes should be set to zero. Rests are hard to distinguish from
places where the performer puts spaces between the notes of a phrase, to take a
breath for example. By setting the penalty to zero we avoid having the algrithm
jump to a scored rest on the basis of a falsely detected one.

Whenever a note is matched using the slow algorithm, the following note in
the score 1s awaited using the fast algorithm. The criterion for a match depends
on whether the new note has the same pitch as the old one or not. If the pitch 1s
the same, a note onset triggers it; otherwise, any instantaneous pitch within 40
cents of the desired pitch does. This match does not affect the slow algorithm’s
state; instead, it triggers the computer’s response to the new note in advance
of when it would have been triggered by the slow algorithm.

5 Practical details

Feedback is especially problematical when using the sung voice for score follow-
ing. We have found that a headset microphone, set very close to the corner of
the singer’s mouth but out of the airstream, gives fair but not perfect isolation
of the voice signal. The dynamic range of singing is much greater than for most
other instruments; it can exceed 55 DB. This makes it harder to use threshold-
ing to detect when the singer is singing a note and when not. We have often
found it necessary to raise and lower the thresholds depending on the location
in the score.

References

[Brown 92] Brown, J.C.; and Puckette, M.S., (1992). ”An Efficient Al-
gorithm for the Calculation of a Constant Q Transform”, J.
Acoust. Soc. Am. 92, 2698-2701.



[Brown 93]

[Dannenburg 84]

[Dannenburg 86]

[Noll 69]

[Pitman 79]

[Puckette 91]

[Puckette 92]

[Rabiner 78]

[Vercoe 84]

[Vercoe 85]

Brown, J.C., and Puckette, M.S.; (1993). ”A high resolution
fundamental frequency determination based on phase changes
of the Fourier transform”, J. Acoust. Soc. Am. 94, 662-667.

Dannenburg, R. 1984. 7 An On-line Algorithm for Real-Time
Accompaniment” | Proceedings, ICMC (Paris, France), P. 187.

Dannenburg, R., Mukaino, H. 1986. ”New Techniques for En-
hanced Quality of Computer Accompaniment”, Proceedings,

ICMC (Cologne, Germany), P. 243.

Noll, A. M., 1969. ”Pitch determination of human speech by
the harmonic product spectrum, the harmonic sum spectrum,
and a maximum liklihood estimate.” Proc. Symp. Computer
Proc. in Comm., pp. 779-798.

Pitman, E. J. G., 1979. Some Basic Theory for Statistical
Inference. London: Chapman and Hill.

Puckette, M., 1991. ”Combining Event and Signal Process-
ing in the MAX Graphical Programming Environment.” Com-
puter Music Journal 15(3): pp. 68-77.

Puckette, M., and Lippe, A. C. 1992. ”Score Following in Prac-
tice,” Proceedings, International Computer Music Conference.
San Francisco: Computer Music Association, pp. 182-185.

Rabiner, L.R., and Schafer, R.W., 1978. Digital Processing of
Speech Signals. Englewood Cliffs, N.J.: Prentice-Hall.

Vercoe, B. 1984. "The Synthetic Performer in the Context
of Live Musical Performance”, Proceedings, ICMC (Paris,
France), P. 185.

Vercoe, B. and Puckette, M. (1985). ”Synthetic Rehearsal:
Training the Synthetic Performer”, Proceedings, ICMC (Van-
couver, Canada) pp. 275-289.



